Journal of Fluorine Chemistry, 11 (1978) 251–264 © Elsevier Sequoia S.A., Lausanne – Printed in the Netherlands Received: July 1, 1977

NEUE HEXAFLUORONICCOLATE(IV): SrNiF₆, BaNiF₆, CsRbNiF₆ UND RbKNiF₆

R. HOPPE und Th. FLEISCHER [1]

Institut für Anorganische und Analytische Chemie der Justus-Liebig-Universität, 6300 Gießen, Heinrich-Buff-Ring 58, FRG, (Germany)

Herrn Professor Emeleus zum 75. Geburtstag gewidmet.

SUMMARY

Newly obtained by high pressure fluorination synthesis are bright carmine red samples of $Sr[NiF_6]$ (BaGeF₆ type of structure, a= 7,07₄; c= 6,65₆ Å), BaNiF₆ (monoclinic, a= 9,46; b= 4,95; c= 9,52 Å; B= 103,4°; Z= 4) as well as CsRb[NiF₆] (a= 8,69₁ Å) and RbK[NiF₆] (a=8,30₂ Å), which both are cubic members of the series of mixed crystals within the systems $Cs_2[NiF_6]/Rb_2[NiF_6]$ and $Rb_2[NiF_6]/K_2[NiF_6]$. The bond length Ni-F is discussed by means of the Madelung Part of Lattice Energy, MAPLE, and Effective Coordination Numbers, ECON, these calculated using Mean Fictive Ionic Radii, MEFIR.

I. INTRODUCTION

Obwohl $K_2[NiF_6]$ bereits 1949 von W. Klemm [2] und anschließend auch $Rb_2[NiF_6]$ sowie $Cs_2[NiF_6]$ dargestellt [3] wurde, ist über solche Fluoride noch wenig bekannt:

So enthalten Proben von $Na_2[NiF_6]$, durch Druckfluorierung erhalten [4], stets NaNiF₃ und Na_3NiF_6 als Verunreinigung und sind zudem Gemenge einer kubischen und einer hexagonalen Form [1], [4]. Viele, seit 1951 oft wiederholte [5], [6] Versuche, BaNiF₆ oder SrNiF₆ darzustellen, blieben zunächst ohne Erfolg. Nachdem wir durch Hochdruckfluorierung neue, ungewöhnlich zusammengesetzte Fluoride wie $Cs_2[CuF_6]$, [7], und $O_2^+[MnF_5]$, [8], erhalten haben und Vorversuche Hinweise auf die Existenz von BaNiF₆ [9] ergaben, haben wir erneut die Hochdruckfluorierung geeigneter Stoffe zur Synthese solcher Verbindungen durchgeführt.

II. SrNiF₆ and BaNiF₆

A) Ausgangsstoffe, Darstellung der Proben, Analysen

Im Hinblick auf frühere Erfahrungen [5], [6] wurde von Ba[Ni(CN)₄]·4H₂O bzw. Sr[Ni(Cn)₄]·5H₂O ausgegangen, die nach (modifizierter [1]) Vorschrift [10] dargestellt waren.

Zur Fluorierung wurden fein verriebene, partiell bereits dehydratisierte Proben zunächst bei Raumtemperatur mit verdünntem ($F_2:N_2 = 1:5$) Fluor umgesetzt, wobei sich beim langsamen Erwärmen auf 300[°]C braune Proben bilden. Diese wurden der Druckfluorierung [Monell-Autoklav, $p_{F_2} = 140$ atm, 280° C, 12 h[unterworfen.

Bei der Analyse beschränkte man sich, da das Verhältnis Ba bzw. Sr zu Ni durch die Einwaage vorgegeben war und keine flüchtigen Fluoride dieser Metalle auftreten, auf die Fluorbestimmung an eingewogenen Proben. Analysenwerte: SrNiF₆ gef. 43,7 (ber. 43,79)% F; BaNiF₆ gef. 36,1 (ber. 36,76)% F.

B) Eigenschaften von SrNiF₆ und BaNiF₆

So dargestellte Proben sind leuchtend karminrote Pulver, die sich an der Luft recht langsam zersetzen. Beim längeren Liegen unter mit Ar gefüllten Glasampullen verblaßt die Farbe im Verlaufe von Wochen langsam. Über die Produkte der thermischen bzw. hydrolytischen Zersetzung soll später berichtet werden, ebenso über die magnetischen Eigenschaften, auch der anderen Fluoroniccolate(IV). Nach ersten Messungen liegen Low-Spin-Komplexe vor.

C) Röntgenographische Untersuchungen

 $a = 7,07_4$ c = 6,65₆ Å, c/a = 0,941, Z = 3 in R $\bar{3}$ m und ist isotyp mit BaGeF₆ [11], vgl. Tab. 1.

Für die Intensitätsrechnung (nicht auf Absorption korrigiert) wurde vorausgesetzt, daß reguläre Oktaeder [NiF₆] mit dem Abstand d(Ni-F) = 1,80 Å vorliegen. Hieraus folgen die Parameter $x_F = 0,120$ und $z_F = 0,156$. Die Übereinstimmung so berechneter und der geschätzten Intensitäten ist gut, vgl. Tab. 1, ebenso die der pyknometrisch bestimmten (d=4,47) mit der röntgenographischen Dichte $d_{rö} = 4,49 \text{ g} \cdot \text{cm}^{-3}$. Auf eine Verfeinerung des Abstandes Ni-F aus Pulverdaten haben wir aus verständlichen Gründen verzichtet. Die Abstände d(Sr-F) = 2,62 Å (6x) bzw. 2,72 Å (6x) sind kürzer als der Summe der Ionenradien entspricht [12]: 2,77 Å. Für d(Ni-F) = 1,78 Å folgt 2,63 Å und 2,72 Å (je 6x).

Überraschend zeigen GUINIER-SIMON-Aufnahmen und schärfer noch solche nach JAGODZINSKI (Cu-K), daß BaNiF₆ nicht zum BaGeF₆-Typ gehört, sondern offensichtlich monoklin mit

 $a = 9,46_5$ $B = 4,95_0$ $c = 9,51_8$ Å, $a = 103,3_6$ ^O, Z = 4 kristallisiert, wobei die Indizierung nach ITO [13] erfolgte (Figure of merit = 42,3; [14]), vgl. Tab. 2.

Die Darstellung 'Guinier-reiner' Proben ist ausgesprochen schwierig.

III. CsRb[NiF₆] und RbK[NiF₆]

A) Darstellung der Proben, Analysen

Innige Gemenge von CsCl, RbCl oder KCl und $[Ni(NH_3)_6]Cl_2$, jeweils p.a. Merck (z.B. mit Cs: Rb: Ni = 1:1:1), wurden zunächst mit verdünntem (N₂: F₂ = 5:1) Fluor bei 280^OC anfluoriert, wobei mehrfach unterbrochen und jeweils nach dem Abkühlen ohne Rücksicht auf mögliche partielle Hydrolyse kurz an der Luft erneut innig verrieben wurde.

hkl	$10^3 \cdot \sin^{2_{\theta}}$ calc.	10 ³ ·sin ² ₀	bs. ^I c	Io
110	47,42	47,48	24,5	20
012	69,38	69,36	16,3	15
202	116,80	116,87	3,2	4
003	120,54	120,59	2,6	3
211	124,04	124,08	6,9	6
300	142,26	142,28	2,5	3
122	164,22	164,20	22,0	20
113	167,96	167,97	0,2	1
220	189,68	189,63	5,8	6
104	230,10	229,95	2,0	3
312	259,06	258,97	3,0	4
401	266,30	266,27	0,4	2
024	277,52	277,84	1,8	3
042	306,48	306,56	2,9	4
223	310,22	-,-	0,4	-
214	324,94	324,73	7,2	7
410	331,94	331,95	3,8	5
232	353,90	353,81	2,5	3

Guinier-Simon-Aufnahme von SrNiF₆, Cu-K_n

Bei der Analyse beschränkte man sich aus den bereits angegebenen Gründen auf die Bestimmung von F an eingewogenen Proben, vgl. Tab. 3.

Anschließend wurden diese Proben der Druckfluorierung [Monell-Autoklav, $p_{F_2} = 130$ atm, 280° C, 8 h] unterworfen.

Auswertung einer Jagodzinski-Guinier-Aufnahme von BaNiF, Cu-K , monoklineIndizierung α_1

hkl	$10^3 \cdot \sin^2_{\theta}$ calc.	$10^3 \cdot \sin^{2_{\theta}}$ obs.	Io
002	27,67	27,61	3
200	27,96	27,96	3
110	31,20	31,24	7
111	41,34	41,37	20
202	42,80	42,84	14
Ī 1 2	52,45	52,46	5
112	65,31	65,38	5
202	68,52	68,52	11
ī 13	83,83	83,83	9
311	84,44	84,36	9
310	87,17	87,25	4
312	95,55	95,59	4
1 1 3	103,12	103,38	5
3 1 1 0 2 1	103,73 103,76	103,80	6
203	109,54	109,34	2
004	110,70	110,60	4
400	111,92	111,98	3
402	113,88	113,91	7
220 221	1 24,82 125,31	125,23	12
Ī 1 4	129,04	129,07	9
312	134,13	134,14	10
221	138,17	138,03	4

Fortsetzung

h	k	1	$10^3 \cdot \sin^{2_{\theta}} \text{calc.}$	10 ³ ·sin ² ^A obs.	Io
ī	2	2	139,63	139,60	4
1	1	4	154,76	154,75	6
0	2	3	159,11	159,13	5
2	2	3	167,80	167,85	4
4	0	4	171,18	171,12	4
3	1	3	178,37	178,27	6

TABELLE 3

Fluoranalysen

Formel	^{%F} ber.	%Fgef.
Cs ₂ NiF6	26,00	25,7
CsRbNiF ₆	29,2	29,4
Rb2NiF6	33,17	33,4
RbKNiF ₆	38,34	38,1
K ₂ NiF ₆	45,4	45,0

Zum Vergleich wurde $K_2 \operatorname{NiF}_6$, $\operatorname{Rb}_2[\operatorname{NiF}_6]$ bzw. $\operatorname{Cs}_2[\operatorname{NiF}_6]$ analog dargestellt. Alle Proben sahen leuchtend rot aus und zeigen die bereits beschriebene Empfindlichkeit gegen Feuchtigkeit und Wasser.

Gitterkonstanten, Dichten und Molvolumina

	a _{Lit} [X]	^a calc.	^a obs.	d _{rö} [cm ³]	d _{pyk}
Cs ₂ NiF ₆	8,90, ^{a)}	8,904	8,90,	4,12	4,07
CsRbNiF ₆	-	8,68,	8,691	3,95	3,92
Rb ₂ NiF ₆	$8,44_4$ a)	8,46 ₆	8,45,	3,78	3,71
RbKNiF ₆	-	8,29,	8,30,	3,45	3,43
K ₂ NiF ₆	8,12, ^{b)}	8,11,	8,11,	3,11	3,14

a) vgl. [15] b) vgl. [2]

B) Röntgenographische Untersuchungen

Tab. 4 gibt die nach GUINIER-SIMON-Aufnahmen bestimmten Gitterkonstanten. Bei $Cs_{2-x}Rb_x[NiF_6]$ und $Rb_{2-x}K_x[NiF_6]$ liegen wie bei den analogen Verbindungen des Mangans [16] offensichtlich Mischkristalle vor, zu denen $CsRb[NiF_6]$ und $RbK[NiF_6]$ gehören, über die hier berichtet wird. $CsK[NiF_6]$ wurde noch nicht erhalten. Berechnete (Ni-F: 1,80 Å) und geschätzte Intensitäten stimmen im ganzen gut überein, siehe Tab. 5 und Tab. 6.

Vergleicht man, siehe Tab. 7, die Molvolumina analoger Fluoride von Ni $^{\rm IV}$ und Mn $^{\rm IV}$, so besteht ein linearer Zusammenhang gemäß

 $Molvol(Ni^{IV}) = 0.949 \times Molvol(Mn^{IV}) + 2.42 [cm^3].$ Die Übereinstimmung ist bei BaNiF₆ so gut, daß man hierin eine unabhängige Stütze für die Richtigkeit der monoklinen Indizierung der GUINIER-Aufnahme nach ITO sehen darf.

IV. On the bond length Ni^{IV}-F

Der für Sr[NiF₈] angenommene Abstand d(Ni-F) = 1,80 Å ist unsicher, da Einkristalldaten an analogen Fluoriden mit Mn^{IV} oder Co^{IV} fehlen. Wir haben daher versucht, unabhängig

TABELLE 5

CSRD[NIFA FUIVEIGACEN (Guinter-Stmon); Su-n_; NB - Siz	CsRb[NiF.]	Pulverdaten	(Guinier-Simon),	Cu-K,	X ₁₂ =	0,20
--	------------	-------------	------------------	-------	-------------------	------

h k l	10 ³ .sin ² ₀ calc.	10 ³ ·sin ² ₉ obs.	Io	I _c
111	23,58	23,56	7	7,8
200	31,44	31,36	5	4,8
220	62,89	62,86	20	22,4
311	86,47	86,50	2	1,3
222	94,33	94,37	11	10,1
400	125,77	125,81	10	9,8
331	149,36	-,	-	0,1
420	157,22	157,28	4	3,9
422	188,74	188,66	7	8,1
$\left. \begin{array}{c} 3 & 3 & 3 \\ 5 & 1 & 1 \end{array} \right\}$	212,24	212,10	3	1,6
440	251,55	251,44	5	5,4
531	275,13	275,24	2	1,2
$\left \begin{array}{c}4&4&2\\6&0&0\end{array}\right\}$	282,99	282,60	2	2,1
620	314,44	314,64	5	5,3

von röntgenographischen Untersuchungen diesen Abstand erneut abzuschätzen und sind dabei von zwei Annahmen ausgegangen:

Der Madelunganteil der Gitterenergie, MAPLE, ist nach zahlreichen Belegbeispielen [17]-[20] bei ternären Fluoriden praktisch ($\Delta \neq 1\%$) gleich der Summe der MAPLE-Werte der binären Fluoride. Es sollte also für die Fluoride A₂[NiF₆] hinsichtlich des noch unbekannten NiF₄ gelten:

 $MAPLE(A_2 NiF_6) - 2x MAPLE(AF) = MAPLE(NiF_4).$

 $RbK[NiF_6]$, Pulverdaten (Guinier-Simon), Cu-K₆, $x_F = 0,214$

hkl	$10^3 \cdot \sin^{2_{\theta}}$ calc.	10 ³ ·sin ²	obs. ^I o	Ic
111	25,86	25,81	17	17,5
200	34,48	34,40	1	0,5
220	68 , 97	69 ,01	20	23,1
311	94,83	94,88	4	3,7
222	103,45	103,48	12	12,0
400	137,94	137,97	16	15 , 8
331	163,53			0,3
420	172,42	172,30	2	0,7
422	206,91	206,81	8	8,3
5 1 17.	070 88	070 00	_	
333)	252,11	232,82	5	3,9
440	275,88	275,94	9	8,8
531	301,46	301,74	3	2,7

Man könnte also x_F z.B. für die Serie $Cs_2[NiF_6]$, $CsRb[NiF_6]$ bis $K_2[NiF_6]$ jeweils so wählen, daß aus dem hierfür berechneten MAPLE-Wert für das ternäre bzw. quaternäre Fluorid dann für NiF₄ praktisch jeweils der gleiche MAPLE-Wert folgt. Jedoch reicht diese Annahme nicht aus, da möglicherweise d(Ni-F) innerhlab der genannten Serie von Mischkristallen des K_2PtCl_6 -Typs nicht konstant ist, und dann mehrere Lösungen existieren.

Zweitens kann man, ausgehend von geschätzten Ionenradien, z.B. nach Shannon [12], interatomare Abstände in Mean Fictive Ionic Radii, MEFIR, umrechnen und mit Hilfe dieser dann Effective Coordination Numbers, ECoN, berechnen [21], [22].

Molvolumina $MV[cm^3]$ von Fluoromanganaten(IV) und Fluoroniccolaten(IV)

	WV obs.		Wvobs.	Wvcalc*)	(<mark>1</mark> , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	WV('MnF ₄ ')b)
Cs ₂ MnF ₆	108,69	Cs, NiF,	106,39	105,57	41,08	43,64
CsRbMnF ₆	101,07	CSRbNife	98,85	98,34	39,18	41,43
Rb ₂ MnF ₆	93,44	Rb ₂ NiF ₆	90,88	91,10	36,85	39,44
RbKMnF,	89,11	RbKN1F ₆	86,16	86,99	36,13	39,10
K ₂ MnF ₆	83,62	K ₂ Nif ₆	80,55	81,78	34,51	37,60
Na, MnF ₆	72,92	Na ₂ N1F ₆	71,10	71,63	41,40	43,22
BaMnF ₆ a)	65,56	$BaNiF_{6}^{a}$	65,39	64,64	29,50 ^{a)}	29,67 ^{a)}
SrMnF ₆ ^{a)}	58,06	SrNiF ₆ a)	57,94	58,77	28,57 ⁸⁾	28,69 ^a)

*) $MV_{(Ni)} = 0,949 \cdot MV_{(Mn)} + 2,424 [cm^3]$

^{a)}Mit $A_2[MnF_6]$ bzw. $A_2[NiF_6]$ nicht vergleichbar, da andere Struktur z.B. $MV(!MnF_4^{\dagger}) = MV(K_2MnF_6) - 2MV(KF)$.

Berechnung von ECoN und MEFIR für Rb_2NiF_6 $x_F=0,211$ Startwerte: $R(Rb^+) = 1.73$; $R(Ni^{4+}) = 0.48$; $R(F^-) = 1.33$ [Å]

Ni	F	Rb		
Abstand	1,782	3,657		
Beitrag zu ECoN	6 x 1,00	8 x 0,00		
$ECoN = 6, O_{\bullet}$	MEFIR = C),47, Å		
Rb	F	Rb	F	
Abstand	3,004	4,223	4,907	
Beitrag zu ECoN	12 x 1 ,05	6 x 0,08	$12 \times 0,00$	
ECoN - 13,05	MEFIR - 1	1,712 Å		
P	F	Rb	Ni	F
Abstand	2,520	3,004	1,782	3,452
Beitrag zu ECoN	4 x 1,11	4 x 0,90	0,88	4 x 0,01
ECoN = 8,9 ₆	MEFIR = 1	1,284 Å		

Als Beispiel gibt Tab. 8 die Werte für Rb_2NiF_6 . Diese zeigt zunächst, daß die klassischen Koordinationszahlen (C.N.) für Ni (6) und Rb (12) gegen F vorliegen, daß aber ECoN (Rb⁺) mit 13,0 wegen geringer Beiträge Rb-Rb, wie dies bei 'großen' Kationen zu erwarten ist, etwas höher als der 'klassische Wert' liegt.

Für die Hexafluoromanganate(IV) konnten wir nun zeigen [16], daß plausible und mit den MAPLE-Werten konsistente Abstände Mn^{IV} -F dann resultieren, wenn man für ECON(F⁻) den willkürlichen Ansatz macht, daß hier der Beitrag zu ECON durch Mn^{IV} praktisch gleich dem von A⁺ (mit A=K, Rb, Cs) ist. Tab. 8 zeigt, daß dies bei Rb₂[NiF₆] dann der Fall ist, wenn d(Ni-F) = 1,78₂ Å gesetzt wird, vgl. auch Tab. 9.

und Abstände bei $A_{2-x}A_{x}^{\dagger}[NiF_{6}](A,A^{\dagger} = K,Rb,Cs)$ Startwerte: $R(Cs^{+}) = 1,88$, $R(Rb^{+}) = 1,73$, $R(K^{+}) = 1,60$, $R(Ni^{4+}) = 1,48$, $R(F^{-}) = 1,33$ [Å] Effektive Koordinationszahlen = ECoN Mittlere fiktive Ionenradien = MEFIR TABELLE 9

		Beitrag zu ECoN((F ⁻)	MEF	IR		Absı	cănde
Symbol	×F	-von A ^t bzw. A ¹⁺	-von Ni ⁴⁺	A bzw.A'	Ni ⁴⁺	l Eq	Nì-F	(A bzw. A')-F
Cs2 NiF6	0, 201	4 x 0,88	0,89	1,88	0,47	1,29	1,79	3,18
CsRbNiF	0, 206	4 x 0,88	0,89	1,78	0,47	1,29	1,79	3,10
Rb ₂ NiF ₆	0, 210	4 x 0,88	0,89	1,71	0,47	1,28	1,78	3,00
RbKNiF ₆	0,214	4 x 0,90	0,89	1,65	0,47	1,28	1,78	2,95
K ₂ NiF ₆	0, 219	4 x 0,90	0,91	1,58	0,47	1,29	1,78	2,88

TABELLE 10

Anteil	Cs ₂ NiF ₆	CsRbNiF,	Rb ₂ NiF ₆	RbKNiF ₆	K ₂ NiF ₆
$A^{+}, A^{+}(2x)$	98,0	100,9	104,2	106,3	109,1
$Ni^{4+}(1x)$	1805,7	1802,4	1807,6	1811,8	1809,0
F ⁻ (6x)	161,1	161,1	161 ,6	161,8	161,1
Σ =	2968,4	2970,8	2985,7	2995,4	2994,0
-MAPLE (AF+A'F)	386,0	398,6	411,2	422,5	433,8
MAPLE (NiF ₄)	2582	257 2	2574	2573	2560

MAPLE von A_{2_v}A_v[NiF₆] [kcal/Mol]

In Tab. 10 sind nun die MAPLE-Werte der Serie $Cs_2[NiF_6]$ über $CsRb[NiF_6]$, $Rb_2[NiF_6]$ und $RbK[NiF_6]$ bis $K_2[NiF_6]$ zusammengestellt. Diese zeigt, daß für das noch unbekannte, nypothetische NiF₄ dann praktisch ein konstanter MAPLE-Wert von 2570± 10 kcal/Mol erhalten wird, wobei die Abstände d(Ni-F) zwischen 1,78 und 1,79 Å liegen. Die Differenz gegenüber dem vorher angenommenen Wert von 1.80 Å ist geringfügig.

V. CLOSING REMARK

Der unerwartete Befund, daß BaNi F_6 nicht zur BaGe F_6 -Struktur gehört, ist zunächst unerklärlich. Möglicherweise haben wir eine Hochdruckform erhalten. Mit der Suche nach der BaGe F_6 -Form von BaNi F_6 sowie mit der Synthese weiterer Hexafluoroniccolate(IV) sind wir beschäftigt.

DANK

Wir danken der Deutschen Forschungsgemeinschaft, dem Verband der Chemischen Industrie -Fonds der Chemie- und den Farbenfabriken Bayer AG, Leverkusen, für die fördernde Unterstützung mit Sachmitteln.

LITERATUR

1 Teil der Diplomarbeit T. Fleischer, Gießen 1977. 2 W. Klemm u. E. Huss, Z. anorg. allg. Chem., 258 (1949) 221. 3 H. Bode u. E. Voss, Z. anorg. allg. Chem., 286 (1956) 136. 4 R. Hoppe, H. Henkel u. G.C. Allen, J. inorg. nucl. Chem., Vol. 31 (1969) 3855. 5 R. Hoppe, Dissertation Münster/Westf. (1954). 6 R. Hoppe, Recl. Trav. chim., 75 (1956) 569. 7 W. Harnischmacher u. R. Hoppe, Angew. Chem., 85 (13) 1973) 590. 8 B. Müller, Vortrag beim 6. Europ. Fluorsymposium 1977, Dortmund. 9 R. Hoppe u. V. Wilhelm, unveröffentlicht; vgl. Dissertation V. Wilhelm, Gießen 1974. 10 G. Brauer, Handbuch der präp. anorg. Chemie, 2. Auflage (Stuttgart 1962). 11 J.L. Hoard and W.B. Vincent, J. Am. chem. Soc., 62 (1940) 3126. 12 R.D. Shannon, Acta crystallogr. A32 (1976) 751. 13 I. Ito, Nature (London), 164 (1949) 755. 14 De Wolff und P. Visser, J. Appl. Crystallogr., 2 (1969) 89. 15 P. Sorbe, J. Grannec, J. Portier et P. Hagenmüller, Comtes rendus, 282, serie C, (1976) 663. 16 R. Hoppe und B. Hofmann, Z. anorg. all. Chem., im Druck. 17 R. Hoppe, Angew. Chemie, 78 (1966) 52; Angew. chem. Int. Ed., 5 (1966) 95. 18 R. Hoppe, Z. anorg. allg. Chem., 340 (1969) 144. 19 R. Hoppe, Angew. Chem. Int. Ed., 9 (1970) 25; Angew. Chem. 82 (1970) 7 sowie R. Hoppe, Madelung Constants as a New Guide in Crystal Chemistry, Advances of Fluorine Chemistry, 6, 387, Butterworth, London 1970. 20 R. Hoppe in: C.J.M. Rooymans and A. Rabenau, Crystal Structure and Chemical Bonding in Inorganic Chemistry, S. 127 (Amsterdam-Oxford 1975) 21 G. Meyer u. R. Hoppe, Z. anorg. allg. chem., 420 (1976) 40-50. 22 D. Fink u. R. Hoppe, Z. anorg. allg. chem., 422 (1976) 1-16.